219 research outputs found

    Equilibrium plans in constrained environments

    Get PDF
    In this paper we analyze equilibria in competitive environments under constraints across players'' strategies. This means that the action taken by one player limits the possible choices of the other players. In this context the classical approach, Kakutani''s Fixed Point theorem, does not work. In particular, best replies against a given strategy profile may not be feasible. We extend Kakutani''s Fixed Point theorem to deal with the feasibility issue.Our main motivation to study this problem of co-dependency comes from the field of supply chain planning. A set of buyers is faced with external demand over a planning horizon, and to satisfy this demand they request inputs from a set of suppliers. Both suppliers and buyers face production capacities and the planning is made in a decentralized manner. A well-known coordination scheme for this setting is the upstream approach where the planning of the buyers is used to decide the request to the suppliers. We show the existence of equilibria for two versions of this coordination model. However, we illustrate with an example that the centralized solution is not, in general, an equilibrium, suggesting that regulation may be needed.We also apply our Fixed Point theorem to a production economy, where both supply and demand are upper bounded.operations research and management science;

    Binarized support vector machines

    Get PDF
    The widely used Support Vector Machine (SVM) method has shown to yield very good results in Supervised Classification problems. Other methods such as Classification Trees have become more popular among practitioners than SVM thanks to their interpretability, which is an important issue in Data Mining. In this work, we propose an SVM-based method that automatically detects the most important predictor variables, and the role they play in the classifier. In particular, the proposed method is able to detect those values and intervals which are critical for the classification. The method involves the optimization of a Linear Programming problem, with a large number of decision variables. The numerical experience reported shows that a rather direct use of the standard Column-Generation strategy leads to a classification method which, in terms of classification ability, is competitive against the standard linear SVM and Classification Trees. Moreover, the proposed method is robust, i.e., it is stable in the presence of outliers and invariant to change of scale or measurement units of the predictor variables. When the complexity of the classifier is an important issue, a wrapper feature selection method is applied, yielding simpler, still competitive, classifiers

    The Agents-are-Substitutes Property in Continuous Generalized Assignment Problems

    Get PDF
    The VCG mechanism has some nice properties if the agents-are-substitutes property holds.For example, for combinatorial auctions the property assures that the VCG mechanism is supported by a pricing equilibrium. The existence of such a pricing equilibrium is a necessary condition for the existence of ascending auctions that are equivalent to the VCG mechanism.Although it is known that the agents-are-substitutes property is important in several settings few problems or subclasses of problems are proven to have the property.In this paper we show for a class of problems that the agents-are-substitutes property holds. Moreover we give two rather natural and small extensions that do not have this property in general.Furthermore we show that in our simple problem class we need the possibility of price discrimination.operations research and management science;

    Binarized support vector machines

    Get PDF
    The widely used Support Vector Machine (SVM) method has shown to yield very good results in Supervised Classification problems. Other methods such as Classification Trees have become more popular among practitioners than SVM thanks to their interpretability, which is an important issue in Data Mining. In this work, we propose an SVM-based method that automatically detects the most important predictor variables, and the role they play in the classifier. In particular, the proposed method is able to detect those values and intervals which are critical for the classification. The method involves the optimization of a Linear Programming problem, with a large number of decision variables. The numerical experience reported shows that a rather direct use of the standard Column-Generation strategy leads to a classification method which, in terms of classification ability, is competitive against the standard linear SVM and Classification Trees. Moreover, the proposed method is robust, i.e., it is stable in the presence of outliers and invariant to change of scale or measurement units of the predictor variables. When the complexity of the classifier is an important issue, a wrapper feature selection method is applied, yielding simpler, still competitive, classifiers.Supervised classification, Binarization, Column generation, Support vector machines

    Supervised Classification and Mathematical Optimization

    Get PDF
    Data Mining techniques often ask for the resolution of optimization problems. Supervised Classification, and, in particular, Support Vector Machines, can be seen as a paradigmatic instance. In this paper, some links between Mathematical Optimization methods and Supervised Classification are emphasized. It is shown that many different areas of Mathematical Optimization play a central role in off-the-shelf Supervised Classification methods. Moreover, Mathematical Optimization turns out to be extremely useful to address important issues in Classification, such as identifying relevant variables, improving the interpretability of classifiers or dealing with vagueness/noise in the data

    A dissimilarity-based approach for Classification

    Get PDF
    The Nearest Neighbor classifier has shown to be a powerful tool for multiclass classification. In this note we explore both theoretical properties and empirical behavior of a variant of such method, in which the Nearest Neighbor rule is applied after selecting a set of so-called prototypes, whose cardinality is fixed in advance, by minimizing the empirical mis-classification cost. With this we alleviate the two serious drawbacks of the Nearest Neighbor method: high storage requirements and time-consuming queries. The problem is shown to be NP-Hard. Mixed Integer Programming (MIP) programs are formulated, theoretically compared and solved by a standard MIP solver for problem instances of small size. Large sized problem instances are solved by a metaheuristic yielding good classification rules in reasonable time.operations research and management science;

    A Greedy Heuristic for a Three-Level Multi-Period Single-Sourcing Problem

    Get PDF
    In this paper we consider a model for integrating transportation and inventory decisions in a three-level logistics network consisting of plants, warehouses, and retailers (or customers). Our model includes production and throughout capacity constraints, and minimizes production, holding, and tansportation costs in a dynamic environment. We show that the problem can be reformulated as a certain type of assignment problem with convex objective function. Based on this observation, we propose a greedy heuristic for the problem, and illustrate its behaviour on a class of randomly generated problem instances. These experiments suggest that the heuristic may be asymptotically feasible and optimal with probability one in the number of customers

    Supervised Feature Compression based on Counterfactual Analysis

    Full text link
    Counterfactual Explanations are becoming a de-facto standard in post-hoc interpretable machine learning. For a given classifier and an instance classified in an undesired class, its counterfactual explanation corresponds to small perturbations of that instance that allows changing the classification outcome. This work aims to leverage Counterfactual Explanations to detect the important decision boundaries of a pre-trained black-box model. This information is used to build a supervised discretization of the features in the dataset with a tunable granularity. Using the discretized dataset, a smaller, therefore more interpretable Decision Tree can be trained, which, in addition, enhances the stability and robustness of the baseline Decision Tree. Numerical results on real-world datasets show the effectiveness of the approach in terms of accuracy and sparsity compared to the baseline Decision Tree.Comment: 29 pages, 12 figure

    Supervised classification and mathematical optimization

    Get PDF
    Data Mining techniques often ask for the resolution of optimization problems. Supervised Classification, and, in particular, Support Vector Machines, can be seen as a paradigmatic instance. In this paper, some links between Mathematical Optimization methods and Supervised Classification are emphasized. It is shown that many different areas of Mathematical Optimization play a central role in off-the-shelf Supervised Classification methods. Moreover, Mathematical Optimization turns out to be extremely useful to address important issues in Classification, such as identifying relevant variables, improving the interpretability of classifiers or dealing with vagueness/noise in the data.Ministerio de Ciencia e InnovaciónJunta de Andalucí

    Semi-obnoxious location models: a global optimization approach

    Get PDF
    In the last decades there has been an increasing interest in environmental topics. This interest has been reflected in modeling the location of obnoxious facilities, as shown by the important number of papers published in this field. However, a very common drawback of the existing literature is that, as soon as environmental aspects are taken into account, economical considerations (e.g. transportation costs) are ignored, leading to models with dubious practical interest. In this paper we take into account both the environmental impact and the transportation costs caused by the location of an obnoxious facility, and propose as solution method of the well-known BSSS, with a new bounding scheme which exploits the structure of the problem.Dirección General de Investigación Científica y Técnic
    corecore